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ABSTRACT 
Graph autoencoder can map graph data into a low-dimensional 
space. It is a powerful graph embedding method applied in graph 
analytics to reduce the computational cost. The training algorithm 
of a graph autoencoder searches the weight setting for preserving 
most graph information of the graph data with reduced 
dimensionality. This paper presents a simple training strategy, 
which can improve the training performance without significantly 
increasing time complexity. This strategy can flexibly fit many 
existing training algorithms. The experimental results confirm the 
effectiveness of this strategy. 

CCS Concepts 
• Computing methodologies ➝ Machine learning ➝ Machine 
learning approaches ➝ Neural networks 

Keywords 
Keywords: Autoencoder; Graph Convolutional Network; 
Perturbation; Training Algorithm. 

1. INTRODUCTION 
Autoencoder is a neural network composed of encoder and 
decoder. Encoder converts the input data into an abstract 
representation, while decoder reconstructs the original input data 
from the output of encoder. Graph autoencoder is based on graph 
neural network, whose input data is graph information. Because 
graph autoencoder has shown great potential in dimensionality 
reduction, it has been drawing more and more attention in graph 
embedding [1].  

Graph autoencoder embeds graph data based on matrix 
factorization [1, 16]. It aims to preserve the graph structure of the 

input matrix, e.g., adjacency matrix, in a low-dimensional space 
by matrix factorization [25]. The effectiveness of an autoencoder 
depend on the effectiveness of its training algorithm, which 
minimizes the loss between the input data and the reconstructed 
data. The traditional autoencoders are based on traditional neural 
networks. Their training algorithms have been studied for decades 
[8]. However, graph neural network is relatively new [17]. It 
motivates researchers to invest substantial efforts in developing 
training algorithms of graph neural network for addressing 
different issues [3, 7, 13, 23, 25, 26]. These efforts also benefit the 
training algorithm design for graph autoencoder. 

Most existing graph autoencoders use deep models or 
convolutional networks. The deep learning method was first 
implemented in a graph autoencoder named SDNE [21]. This 
autoencoder focuses on the proximity of a simple graph composed 
of vertexes and edges. It uses the first order and second order of 
proximity to describe pairwise vertex proximity and pairwise 
neighborhood structure proximity, respectively. The training 
algorithm of SDNE is semi-supervised. Tu et al. also applied deep 
learning in their graph autoencoder DRNE [18]. This autoencoder 
uses multilayer perceptron (MLP), a feedforward neural network, 
while its whole model is recursive. DRNE uses Adam training 
algorithm [9]. Cao et al. applied deep learning in a denoising 
graph autoencoder called DNGR [2]. A denoising autoencoder 
used corrupted input in the training, while the expected output of 
decoder is the original input [19]. This training algorithm aims to 
enable the trained autoencoder to automatically filter out noise. 
Yu et al. used deep learning to develop an adversarially 
regularized autoencoder named NetRA [24]. Its adversarial 
training platform is composed of generator and discriminator [6]. 
Generator generates faked encoded representations, while 
discriminator attempts to distinguish faked representations from 
real output of encoder. This algorithm is good at reducing 
autoencoder learning failures caused by too much capacity of 
encoder and decoder. Graph convolutional network (GCN) [11] is 
also very popular in graph autoencoders. Kipf and Welling 
introduced a variational graph autoencoder (VGAE) and its non-
probabilistic variant, GAE, based on a two-layer GCN [12]. The 
encoder of a variational autoencoder is a generative model, which 
learns the distribution of training samples [10]. Wang et al. 
presented a marginalized graph autoencoder (MGAE), which is 
also based on GCN [20]. The training algorithm of MGAE 
marginalizes the corrupted input and optimizes the autoencoder to 
reconstruct the original input. Based on VGAE and GAE, Pan et 
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al. proposed an adversarially regularized autoencoder ARVGE 
and its variant ARGE [16]. 

The training algorithm is a key component of a graph 
autoencoder. Researchers have designed different training 
algorithms for above graph autoencoders. This paper proposes a 
simple training strategy, which can be applied in many existing 
training algorithms. Here, we focus on using this strategy in GCN 
based autoencoders. 

The rest of this paper is organized as follows. Section 2 introduces 
the basic architecture of a GCN based autoencoder model. The 
details of the proposed training strategy are provided in section 3. 
Experimental results are presented in section 4. Section 5 
concluded the paper.  

2. THE GCN BASED AUTOENCODER 
MODEL 
A graph autoencoder is composed of an encoder and a decoder. 
The upper part of Figure 1 is a diagram of a general graph 
autoencoder. The input graph data is encoded by the encoder. The 
output of encoder is the input of decoder. Decoder can reconstruct 
the original input graph data. Kipf and Welling proposed a GCN-
based autoencoder model [12]. This diagram of this model is 
given in the lower part of Figure 1. The encoder in this model is a 
GCN. The input graph data can be represented by (A, X), where A 
is the adjacency matrix, while X is the node feature matrix. If the 
number of nodes is n, A is a 𝑛 × 𝑛 matrix. It is worth noting that 
all diagonal elements of A are set to one. If the number of features 
is m, X is a 𝑛 × 𝑚 matrix. We can build the 𝑛 × 𝑛 degree matrix 
D based on A by the following expression.  

𝐷%& = (∑ 𝐴%+,
+-. , 𝑖𝑓	𝑖 = 𝑗
0, 𝑖𝑓	𝑖¹𝑗     ,                                 (1) 

where 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Assume the GCN used in the encoder has k 
layers. The output of the lth layer of GCN, represented by 𝑍(9), 
can be computed by the following formula.  

𝑍(9) = 𝑓(9)(𝐷;
<
=𝐴𝐷;

<
=𝑍(9;.)𝑊(9)),                           (2) 

where   1 ≤ 𝑙 ≤ 𝑘, 𝑍A = 𝑋, 𝑓(9) is the activation function of the 
lth layer, 𝑊(9) is the weight matrix of the lth layer, and 𝐷;

<
= can 

be calculated by the following expression. 

											𝐷%&
;<= = C𝐷%%

;<=, 𝑖𝑓	𝑖 = 𝑗
0, 𝑖𝑓	𝑖¹𝑗

                                                (3) 

The training algorithm adjusts the weight parameters of all layers. 
In GAE VGAE, ARGE, and ARVGE, the two-layer GCN of the 
encoder uses the following Relu activation function for the first 
layer. 

𝑓DE9F(𝑡) = max	(0, 𝑡)                                            (4) 
And the following linear function is used for the second layer. 

𝑓9%,EKL(𝑡) = 𝑡                                                         (5) 
We represent the output of the encoder by Z.  In GAE and ARGE, 

𝑍 = 𝑍(M),                                                                 (6) 
while in VGAE and ARVGE, the output of the encoder is 
calculated by the following expression. 

𝑍 = 𝑍(M) + 𝑁,×LP0,𝐸𝑥𝑝(𝑍(M))T,                            (7) 

where r is the number of units in hidden layer 2, Exp(•) element-
wisely computes the natural exponential of the input matrix, and 
𝑁,×L(0,•) returns an 𝑛 × 𝑟 matrix filled with random values with 
(0, •) normal distribution. 

The input of the decoder is Z, the output of the encoder. Here, we 
focus on reconstructing the adjacency matrix, A. The 
reconstructed adjacency matrix is denoted by 𝐴′  and can be 
computed by the following formula. 

𝐴′ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍𝑍[),                                            (8) 
where 𝑍[  is the transpose matrix of Z and the details of 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(•) are given as follows. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡) = .
.\E]^

                                               (9) 

 

 
Figure 1. The upper part is the diagram of a general graph autoencoder. The lower part is the diagram of a GCN based graph 

autoencoder proposed by Kipf and Welling [12]. 
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3. TRAINING STRATEGY 
One goal of autoencoder training is to minimize the generalization 
error, which reflects the generalization ability of an autoencoder. 
It is reasonable to assume that the training set can represent the 
whole input space. We propose a simple training strategy to create 
new training samples based on the existing training set by adding 
perturbation to original training samples. 

As for a given training sample, its adjacency matrix is filled with 
one and zero. If an element is one, it suggests the corresponding 
pair of nodes are connected by an edge. Similarly, zero indicates 
the corresponding pair of nodes are not connected. Note that we 
only focus on the edges between different nodes, so the elements 
of the diagonal of the adjacency matrix are ignored. Here, we 
design a training strategy for sparse adjacency matrixes, while this 
strategy can also be adjusted for dense adjacency matrix. We set a 
small perturbation rate denoted by p. If there are totally u edges in 
an original training sample, ⌊pu⌋ elements of the adjacency matrix 
will be randomly picked for value change from one to zero, where 
⌊•⌋ is the floor function. Similarly, ⌊pu⌋ elements with original 
value zero will also be randomly selected for changing values to 
one. In the training, we feed perturbed training samples instead of 
the original samples to the training algorithm. This strategy is 
summarized as follows.  

 

Training Strategy (perturbation rate 𝑝, 0 < 𝑝 ≪ 1): 
For each iteration: 
      randomly remove edges with rate 𝑝; 
      randomly add new edges with rate 𝑝; 
      feed the perturbed sample to the original training 
algorithm. 
End For 

 
The working flow of this strategy is provided in Figure 2. 

 

 
Figure 2. The working flow of the proposed training strategy. 

In the unsupervised learning framework of autoencoder, the 
training algorithm can use the input as expected output. Based on 
this property, our training strategy generates “new” samples to 
avoid the overfitting problem. This strategy only updates the 
training samples, so it can flexibly fit many existing training 
algorithms. Different from denoising training algorithms, in which 
the expected output is the original input, our strategy also uses the 
perturbed samples as expected output of decoder. Based on our 
strategy, original samples are replaced by perturbed samples in the 
training. The number of samples processed by the training 
algorithm is the same. Therefore, the computational cost of 
training algorithm does not significantly increase. The original 
training algorithm is the special case of our strategy with 
perturbation rate zero. 

4. EXPERIMENTS 
 

Table 1. The information of data sets used in experiments 

 Cora CiteSeer 
The number of Nodes 2708 3327 
The number of edges 5429 4732 

The number of Features 1433 3703 
 

Table 2. Results for Link Prediction on Cora. GAE, VGAE, 
ARGE, and ARVGE are original methods, while GAE+, 
VGAE+, ARGE+, and ARVGE+ are the corresponding 

methods with the proposed strategy. 

Method AUC AP 

GAE 91.0 ± 0.01 92.1 ± 0.01 

GAE+ 91.2 ± 0.01 92.4 ± 0.01 

GVAE 91.8 ± 0.01 92.8 ± 0.01 

GVAE+ 92.1 ± 0.01 92.9 ± 0.01 

ARGE 88.6 ± 0.01 90.5 ± 0.01 

ARGE+ 90.4 ± 0.01 91.9 ± 0.01 

ARVGE 90.6 ± 0.01 92.2 ± 0.01 

ARVGE+ 90.9 ± 0.01 92.4 ± 0.01 
 
To verify the effectiveness of our strategy, we conduct 
experiments of link prediction on two data sets: Cora [15] and 
CiteSeer [5]. The information of these two data sets are given in 
Table 1 [12, 16]. Both data sets were used for testing [12, 16]. Our 
experiments test GAE, VGAE, ARGE, and ARVGE, four GCN 
based autoencoder, with and without using our strategy. We 
follow the same setting used in experiments of [12]. In each data 
set, 5% connected node pairs and 5% non-connected node pairs 
are randomly picked for the validation set. Similarly, 10% 
connected node pairs and 10% non-connected node pairs are 
randomly picked for the test set. The rest is used for the training 
set. The learning rate is 0.01. Each time, the training uses Adam 
algorithm [9] and takes 200 iterations. In practice, the proposed 
strategy uses the original training sample in the last iteration and 
newly generated samples in other iterations. The dimensions of 
the first and second layer are 32 and 16, respectively. As for other 
parameters, we use the default setting of each method.   
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Table 3. Results for Link Prediction on CiteSeer. GAE, 
VGAE, ARGE, and ARVGE are original methods, while 

GAE+, VGAE+, ARGE+, and ARVGE+ are the 
corresponding methods with the proposed strategy. 

Method AUC AP 

GAE 89.2 ± 0.02 89.9 ± 0.01 

GAE+ 90.1 ± 0.01 90.6 ± 0.01 

GVAE 90.7 ± 0.01 92.0 ± 0.01 

GVAE+ 91.0 ± 0.01 92.4 ± 0.01 

ARGE 84.8 ± 0.02 87.1 ± 0.01 

ARGE+ 87.2 ± 0.01 88.9 ± 0.01 

ARVGE 88.3 ± 0.01 90.0 ± 0.01 

ARVGE+ 90.3 ± 0.01 91.6 ± 0.01 
 
The experiments apply area under the ROC curve (AUC) and 
average precision (AP) scores [4, 14, 22] to measure performance. 
As for each method, we repeatedly train ten times on either data 
set. In order to easily reproduce training results, random seed of 
the ith time is set to i. We report average scores and related 
standard deviations.  

The experimental results on Cora are given in Table 2. These 
results show the proposed strategy consistently improves the 
performance of each method on Cora. The experimental results on 
CiteSeer are given in Table 3. The proposed strategy also 
consistently improves the performance of each method on 
CiteSeer. The consistent advantage of our strategy on all methods 
and both data set confirms the effectiveness of this strategy.  

5. CONCLUSION 
This paper proposes a simple training strategy for graph 
autoencoder. It generates new training samples by adding random 
noise to original sample. This strategy can be applied in most 
existing training algorithms. The experimental results show this 
strategy improves the performance. Furthermore, our strategy also 
provides a new way to avoid the overfitting problem. 
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